Desktop Warp Core - The Early Years

Well, we've moved into a new and larger space at the office and we sit at these massive wood and steel desks as teams. Our team decided we needed more "flare" at our desk, so, of course, a big-ass warp core was the first thing that popped into our heads. How hard could that be? The rings of the warp core will be clear-ish fiberglass. The original master, over which we'll make a fiberglass mold for all eight rings, is made of a giant laminated wood block we need to turn on a big lathe.

Laminating 2x6 pieces of pine for the ring master mold

Turns out, I was wrong about Elmer's Wood Glue: It most certainly does stick heartily to plastic tables. My wife wasn't too thrilled about the weird globs of dried glue on the table, right before a big pool party, so I spent a solid half-hour with a wood chisel scraping off those nasty little glue-scabs. Ick and neat at the same time.

Bright White LEDs!

Aside from the general shared engineering tasks, I am in charge of lighting this bad bay. I looked into electroluminescent strips, but it's too expensive and, frankly, not bright enough for our tastes. So, LEDs will be the lighting source of choice on this one. As you can see from the photo above, these inexpensive little 5mm LEDs are plenty bright enough.

The only complaint I have is that they're very directional. At first I thought that I'd just sand them to diffuse the light. But, after some tinkering, I'm going with a sneaky little angled approach: Point the LEDs in a ring at an angle out from the center of the ring so that its light hits the backside of the fiberglass ring in a sorta elongated oval thing. The light from each of the 30 LEDs in a ring will then overlap and make a nice-looking light ring from inside each warp core ring. But, here is my test rig for the LEDs:

LED Test Rig: 4" PVC pipe with foil tape as a reflector

The idea with the LED monster above was to see which worked better for diffusing the LED beams better: Point the LED straight out (left LED), or bend it back toward the reflective foil (right LED) which is convex and should spread the light better. Of course, light dies off over distance and the more we bounce it around, the less of an impact it makes. Below is what the LEDs are projecting without blinding the iPhone camera:

LED beam spread test fire

So, looking at that photo, you see the reflected LED gets a little black spot on the sun today (Sting) in its beam. The other is brighter, but more concentrated. So, we'll see how my idea of pointing the LEDs at the inside of the fiberglass rings at an angle to lengthen the shape of their beams.

I started out by building the microcontroller and MOSFET circuit, complete with firmware that pulses and fades the LEDs. The speed that the rings pulsate into the middle is set by a potentiometer, at the moment. I think I may add the ability for it to try to pulse to the beat of music. Who knows?

Here is the circuit for the LEDs in action:

The microcontroller is my old favorite, the Atmel AVR. This one is an ATmega328P in the PDIP package. The rings of LEDs (in this video, the lines of LEDs) are powered by 12 volts DC and are controlled by N-channel MOSFETs. Each ring will have a total of 30 LEDs. Each ring will have 10 groups of 3 LEDs plus one resistor all run in parallel on the 12-volt rail. Pretty standard stuff.

Expanding foam (40X volume, I seem to recall) to be carved for matter-antimatter combustion chamber

Because of the size of the middle section, the matter-antimatter combustion chamber is quite large in our model, we decided to try making a big round thing of foam and then carving that down to the outside shape of the chamber. We'll then (theoretically) cover it in fiberglass and refine the resulting shell after that.

That's it for this update. I'll get more up here as we progress. Thanks as always for following my blog!

12VAC Power Supply from Ikea Wall Wart Light Power Supply

I recently rebuilt the lighting in my office because the crappy 12-volt strung lighting from Ikea that the previous owner installed was insufficient for working comfortably in my Man Cave™. Here's the NEW lighting above the sound-proffed barn door window shade things: New Man Cave™ Lighting

With the intensity of the photo cranked down a bit, you can see the simple valence I made out of pre-primered pine trim board:

Valence around new Man Cave™ lighting

The old lighting was 12VAC wire cable lighting with halogen lights. You seem the at Ikea. Two steel cable strung between two walls and the halogen lights hang between the wires at regular intervals. It's really cool, but it isn't very bright and the light is very yellow. I like daylight-ish fluorescent lighting, so that's what I bought to replace the old stuff.

Now, on to the real story: I salvaged the wall wart transformer/power supply for the 12VAC lighting and made a simple 12VAC power supply out of it. Not sure what I'll use that for, yet, but it was fun and I feel like I saved the landfill from containing weird metal and plastic parts.

I removed the pushbutton fuse reset thing and replaced it with a neon lamp power switch with a fuse reset feature and then cut a notch in the base of it to hold a strain-relief thing for a power cable from an old VCR I torn down. Then I put a wood base on the back and screwed in to together and sanded it for a nice finish. I haven't painted the edges black, yet. I also need to put little rubber footies on it to keep it from sliding around on the glass top of my electronics workbench.

Here are the photos:

12VAC transformer power supply

Completed power supply with power cord and switch.

Poplar Wood Bottom

Bottom is screwed into four holes built into case of wall wart. I wrote the specifications from the sticker on the transformer inside so that I would not forget how this could catch fire or trip a fuse.

Fuse reset button replaced with on/off/reset switch

I realized after I put it all together and tested the power that the replacement power switch might not trip at the same power draw as the old pushbutton. So, when I laid a big piece of copper wire across the terminals, it sparked and never did trip the switch OR the circuit breaker for the garage workbench. That's probably a fire hazard, but I'll usually have a good quality surge strip (or two) AND a house circuit breaker between my mishaps and the neighborhood power lines.

DIY Workshop Stereo Boombox Kinda Thing

A car stereo, some extra car stereo speakers, some hardwood, and a ATX power supply for a computer and SHAZAM! You get a garage stereo that can play your iPod, XM radio, CDs, and AM/FM radio. This project was easy and only a little tedious to make. It was fun and it sounds awesome. Plus, the little speakers I had in my garage cabinet are not the greatest, but they're not bad. With a 500 or 600 watt power supply, I can beef it up someday if I get the energy.